
AutoCPS: Control Software Dataset Generation for
Semantic Reverse Engineering

Haoda Wang
Information Sciences Institute

University of Southern California
haodawan@usc.edu

Christophe Hauser
Information Sciences Institute

University of Southern California
hauser@isi.edu

Luis Garcia
Information Sciences Institute

University of Southern California
lgarcia@isi.edu

Abstract—Binary analysis of closed-source, low-level, and
embedded systems software has emerged at the heart of cyber-
physical vulnerability assessment of third-party or legacy devices
in safety-critical systems. In particular, recovering the semantics
of the source algorithmic implementations enables analysts to
understand the context of a particular binary program snippet.
However, experimentation and evaluation of binary analysis
techniques on real-world embedded cyber-physical systems are
limited to domain-specific testbeds with a low number of use
cases–insufficient to support emerging data-driven techniques.
Moreover, the use cases rarely have the source mathematical
expressions, algorithms, and compiled binaries. In this paper, we
present AUTOCPS, a framework for generating a large corpus
of control systems binaries along with their source algorithmic
expressions and source code. AUTOCPS enables researchers to
tune the control system binary data generation by varying differ-
ent permutations of cyber-physical modules, e.g., the underlying
control algorithm, while ensuring a semantically valid binary. We
initially constrain AUTOCPS to the flight software domain and
generate over 4000 semantically different control systems source
representations, which are then used to generate hundreds of
thousands of binaries. We describe current and future use cases
of AUTOCPS towards cyber-physical vulnerability assessment of
safety-critical systems.

I. INTRODUCTION

The ubiquitous expanse of the internet of things increased
the interaction of commodity software with the physical world.
As a result, software-based vulnerabilities may allow attackers
to cause physical damage in safety-critical applications, e.g.,
the power grid [1] or nuclear reactors [2]. Thus, a common
goal for both adversaries and security analysts is to reverse
engineer closed-source or legacy systems in the context of
their subsuming cyber-physical system [3]. In particular, cyber-
physical vulnerability assessment commonly focuses on un-
derstanding the cyber-physical impact of low-level, embedded
firmware that directly interfaces with the sensors and actuators
of a cyber-physical system.

Recent research [4], [3], [5], [6] has focused on the problem
of semantic reverse engineering of closed-source, low-level,
and embedded binary programs for cyber-physical systems.
Semantic reverse engineering involves analyzing a software
program and connecting the extracted information to a seman-
tic model, e.g., a cyber-physical system model. Researchers
increasingly apply procedural and data-driven approaches to
recover or identify math expressions within the given binary,
usually by employing either signature-based approaches from a
set of labeled binary representations [7], [8], [9] or by perform-

ing semantic-pattern matching to a set of known algorithmic
implementations [4], [3]. Recent efforts [5] have aimed to
combine traditional program analyses with machine translation
to extract math expressions without a reference set of known
functions. However, all approaches are difficult to generalize
and evaluate across other real-world, cyber-physical domains
as the evaluation datasets are domain-specific and limited in
the variety of samples.

Semantic reverse engineers commonly evaluate on a single
repository that can be compiled to various hardware targets,
e.g., the Ardupilot repository [10] for robotic vehicles consists
of source code for various autonomous vehicle platforms along
with various microcontroller permutations. However, there are
often a scarce number of permutations of control algorithm
implementations that are semantically different, i.e., control
algorithms based on fundamentally different mathematical
expressions rather than just having variance at the low-level
instruction set due to the compiler. For instance, the Ardupilot
framework [11] has controllers for rovers, submarines, blimps,
helicopters, and antenna trackers and supports over 20 hard-
ware targets. However, there are only six code repositories
that are semantically different since the associated control
algorithms have been fine-tuned for their domains. Moreover,
CPS software repositories rarely contain the source algorithmic
and mathematical expressions–which could serve as ground
truth for recovering program semantics [5].

In this paper, we introduce AUTOCPS, an automatic flight
software (FSW) dataset generation framework. The phrase
“flight software” is most often defined as a subset of embedded
real-time software that executes onboard a spacecraft (includ-
ing ground-based systems such as landers and rovers as well)
or aircraft and provides capabilities such as attitude control
and mobility [12]. However, we extend this definition of flight
software in this work to also include control software running
on other cyber-physical systems such as UAVs and rovers.

AUTOCPS aims to generate a large corpus of unique,
end-to-end controller software source code repository. Each
unique source code repository is associated with a set of
source mathematical expressions as well as a set of compiled
versions of the source code. To enable AUTOCPS, we first
survey several CPS source repositories commonly used for
cyber-physical vulnerability assessment and semantic reverse
engineering. We summarize the surveyed repositories into
a common modularized structure. AUTOCPS works by first
modularizing the summarized representations of flight software
algorithmic expressions. We define a randomization space for



each module based on the number of possible valid choices,
e.g., choosing from a set of state estimation methods. Users
can configure the randomization space for each module to
customize the FSW source code generation. AUTOCPS then
uses an autocoder to translate the module randomization space
and generation configuration to generate a large corpus of
random but valid FSW software repositories. Our results
show that AUTOCPS can generate over 4K unique source
implementations of valid FSW systems with tuples of source
math expressions and, optionally, a set of compiled binary
files. We discuss how AUTOCPS can interface with software-
in-the-loop simulation frameworks to dynamically validate the
behavior of the generated flight software, as well as the broad
set of research directions enabled by AUTOCPS.

Contributions. We summarize our contributions as follows.

• We summarize a generalized and modular mathemat-
ical representation of flight software systems from a
survey of popular, open-source repositories.

• We present AUTOCPS1, a control systems binary
generation framework to generate a large corpus of
random, semantically-unique flight software systems.
AUTOCPS’s initial modularization has a randomiza-
tion space of 4K unique source software repositories,
which can subsequently be compiled to any hardware
platform with any number of compilation permuta-
tions.

• We provide a mechanism to interface each generated
FSW sample with software-in-the-loop simulators to
enable dynamic modeling and visualization.

We open-source both the binary generation pipeline along with
a sample large FSW repository dataset.

II. METHODOLOGY

In this section, we describe the primary research challenges
we address over the development of AUTOCPS.

A. Challenges and Key Insights

Three primary challenges were identified during the devel-
opment of AUTOCPS. Solving these challenges provided key
insights into the design of common flight software frameworks.

For flight software generated by AUTOCPS to accurately
represent different physical platforms, we needed to find a
generalized flight software architecture. Flight software on
platforms are often highly adapted to their use case, and thus
implement a wide array of different functionalities [12]. Thus,
to accurately model these systems, a set of core functionalities
common to all flight software was ascertained, which guided
the development of the AUTOCPS-generated software.

By modularizing the design of our flight software, AU-
TOCPS users can gain additional insight by analyzing specific
modules before attempting to work on the full binary. However,
this required AUTOCPS to split up the modules sensibly. In
particular, this required grouping software tasks such as clock

1The source code for AUTOCPS can be found at https://github.com/
usc-isi-bass/AutoCPS.

management, waypoint navigation, and attitude control into
discrete sets of interdependent tasks.

The final challenge involved finding a method to randomly
generate valid flight software modules. We define a “valid”
flight software module to be a module which executes every
task required of this module as determined by the problem
above. Note that for the purposes of AUTOCPS the module
may be valid without being able to correctly perform the task,
as long as it exposes the respective function for the controller
to call.

B. AUTOCPS Design Goals

Figure 1 depicts an overview of the AUTOCPS design. To
address the above research challenges, we aim to achieve the
following design goals:

• Provide a “summarization” of cyber-physical modules
in flight software based on surveyed techniques in the
real world, including valid permutations within each
module.

• Design an autocoder that can generate a maximal set
of random, unique, and valid set of flight software
source code based on modular approach as well as a
dataset configuration.

• For each flight software, generate a tuple that includes
the set of mathematical expressions, the associated
source code, as well as a set of compiled binaries.

III. MODULARIZING FLIGHT SOFTWARE DESIGN

We find that flight software for these vehicles differs
primarily in their propulsion method and movement limits. For
example, Jackson examines the design of missile flight control
systems and concludes that such systems contain 4 basic
elements: an inertial measurement unit (IMU), an autopilot,
an actuator, and an airframe dynamics controller [13].

Ardupilot has a similar set of components. The IMU is
now split into various sensors, including an Inertial Sensor,
a Barometer, and a GPS. The autopilot is split into position
control and attitude control, while the actuation and airframe
dynamics are combined into a servo control library [10].

NASA-JPL also labels the control software onboard their
Mars rovers as flight software [14]. The flight software
components within the rovers are grouped into more fine-
grained divisions labeled as modules. These modules similarly
correspond to the components found in the previous vehicles.
Just like in the Ardupilot software, the system’s location is
determined by a set of modules, including iit, imu, and ras.
Attitude control is further divided into the seq, acs, nav, and
aman modules, while position control is done by the drive
module. Finally, the servo control is controlled by the mot
module

Through our survey of these and other flight control
software, we found that every flight control system consists
of the following core functions:

• Some form of input to receive attitude and location
data, such as sensors or IMU

2



Dataset Generation
Configuration

g(𝑥) = �̇�ଶ

𝑓(𝑥) = �̇�ଵ

Unique FSW Tuple

Source Math
Expressions

Source Code

Binary 
Program

FSW Dataset

Surveyed FSWs
Repositories

AutoCPS

Module1Module2

ModuleN
FSW 

Summarization 
+ Modularization

Modular FSW Model

AutoCoder

Fig. 1. Overview of AUTOCPS pipeline. We first surveyed common flight software designs and generalized them into a modular design that includes all core
capabilities across multiple physical systems. Select components of this generalized FSW can be randomized within a set of restrictions by the autocoder, which
also generates source code from a set of control equations.

• A set of waypoints, either user-defined, automatically
generated, or input at runtime

• A method to convert the waypoint and attitude data
into a modification of the system’s control surfaces

• An interface to the control surfaces

While specific systems may contain code to manage certain
domain-specific functions of the system, every system requires
this set of functions to qualify as flight software. The following
sections describe a generalized flight software design that
integrates these core functions into a simple architecture.

A. Modularization of Flight Software

Flight software is often organized into either a module-
based or layer-based architecture for ease of development. This
design choice can be seen in commonly used flight software
frameworks such as Ardupilot [10] and FPrime [15].

In a layered design, the flight software is divided into
higher and higher levels of abstraction. Thus, one layer would
be an interface with hardware, while the layer above may
translate higher levels’ movement commands into servo move-
ments. Such a design can be seen in the Ardupilot flight
software. Some tasks done by the flight software, such as auto-
stabilization, may reach across multiple layers. While this type
of design is simple to program, it is not amenable to code
reuse. For example, the same vector propagation equation may
be used by both the position and attitude control layers, which
may result in code being duplicated for each layer.

In a modular design, this problem can be solved by having
each of these modules reflect a set of closely related tasks
done by the flight software. For example, the flight software
could split off vector propagation into a module that interfaces
with the position and attitude control modules. Such a design is
found in the F Prime framework [15] and the Mars Exploration
Rovers’ flight software [14]. We similarly choose a modular
design for our autocoded flight software. This is due to two
primary factors:

• A modular design is a superset of the layer design
since each layer can also be represented by a subset
of modules. Therefore using modules allows us to
emulate both types of designs.

• The modular design also allows for some modules to
be offloaded to hardware. This is especially useful as
FPGAs and ASICs are being adopted as coprocessors
in flight controllers due to their power efficiency and
computation speed.

B. Flight Software Design

We design our module architecture to achieve the four core
functions outlined above while also dividing tasks such that
each module’s tasks are independent of the others. As shown
in figure 2, modules may also depend on the outputs of other
modules, reflecting the real-time multi-threaded design of real-
life flight software implementations. Furthermore, additional
modules can be easily added to our architecture to account for
more unique use cases.

Two modules represent the navigational controls of the
flight software. The seq module stores sequences of actions to
be done. This can reflect an autopilot inputting new waypoints
or a controller sending in new directional data to the system.
The autonav module will contain optional automated addi-
tions to the input sequence. This represents automated tasks
that will modify the waypoints of the system, such as auto-
stabilization of a helicopter or plane, or a rover’s obstacle
avoidance logic.

Four modules control positioning hardware and process
their data. The imu module receives data from the inertial
measurement unit or the GPS and other related sensors. It
then converts that data into direction and position vectors.
These vectors will then be sent to the kalman module
described below. Similarly, the sensor module receives data
from sensors that don’t directly provide direction and position
information, such as a camera or an antenna. The kalman
module wraps a Kalman filter to correct for errors in sensor
measurements. The design of this module can also differ based
on the model used. Once the sensor data has been received,
the ivp module converts the data from the sensor’s reference
frame to the inertial reference frame of the system.

Three modules are used to convert the waypoints and po-
sition inputs into a set of movements done by the system. The
pos_ctrl module unifies all waypoints from the controller
(seq) as well as the input data from the ivp and kalman
modules. It uses this data to select the next position to move

3



to. The att_ctrl module takes the output of pos_ctrl
and determines the next direction and heading for the physical
system with this data. Finally, the servo_ctrl module
contains code to interface with the control surfaces of the
physical system, which requires knowledge of the design of
the physical system. Communication to actual servos from this
module is stubbed for our use case.

Finally, a set of auxiliary modules allow the system to
operate within a testbed with no hardware support. The clock
module provides a unified interface for other modules to
fetch timing data from the system. Similarly, the datatypes
module contains classes common to all modules, such as
a Quaternion or a 3-dimensional vector, as well as corre-
sponding helper methods. All autocoding work is done in
the autocode module, which provides s-curve navigation
and various other methods that modify the semantics of the
flight software. Lastly, the stub module provides an inter-
face for the generated flight software to communicate with
the computer instead of the hardware. This module can be
further modified to integrate into common software-in-the-loop
simulators if testing is desired.

IV. IMPLEMENTATION AND CORPUS DESCRIPTION

AUTOCPS consists of two core tools. The first is a gen-
eralized flight software that provides common functions used
across all four supported vehicle types as well as a rudimentary
testbed. The second is an autocoder library, which generates
parameters used by the generalized flight software according
to a set of constraints. Combined, the autocoder and flight soft-
ware can generate over 4000 semantically different binaries.
The source code for AUTOCPS is available on GitHub [16].

A. Flight Software

AUTOCPS generates a single-threaded, non-preemptive
static binary that represents a random flight software. Though
the industry standard is using a threaded real-time OS with a
preemptive scheduler [15], this choice simplifies the autocod-
ing process and does not significantly affect static analysis
tools.

As outlined above, we divide the autocoded flight software
into modules. These modules and their functions are listed in
Table I. Each module acts as an independent library, with its
own .cpp and .h files. These modules can be plugged in and
out of the program as needed to simulate tasks offloaded to
hardware. In particular, we add two modules that allow us to
interface with the autocoder and user input. For ease of use,
the autocode module contains functions generated by the
autocoder, such as the code for s-curve navigation and some
limit checking. Furthermore, the stub module allows us to
abstract away hardware interfacing code without affecting the
core modules within the flight software.

The design of our flight software provides approximations
for four different vehicle types listed below and depicted in
Figure 3. While these vehicles are the main focus of our
dataset, it is trivial to extend the flight software to also
represent other vehicle types.

• Ground vehicles, such as rovers and cars

• Fixed-wing aircraft, such as airplanes

• Rotary-wing aircraft, including helicopters and com-
modity UAVs

• Rockets

B. Autocoder Library

The autocoder is contained within a Python library that
can randomize system parameters. This library can be easily
integrated into other projects and provides fine tuning that
would be cumbersome to do with a command line. We also
provide a simple CLI interface for the autocoder with a much
smaller space of possible generated code.

The library is divided into two major portions. One is used
to generate parameters for the physical system, while the other
handles the software characteristics. This split allows users
to generate a similar software system for multiple different
physical systems. For example, one might choose to test
various generated s-curves on the same physical system.

The autocoder generates software functions, including
maximum speed checks and S-curve fitting and navigation, in
the autocode.cpp file. The physical and software parame-
ters of the program are similarly generated in the params.h
file. Preprocessor directives within each module control their
behavior based on the settings within params.h.

C. Pipeline Design

To generate a new control system, the user begins by
setting their required constraints in a new instance of our
PhysicalSystem or SoftwareSystem class. Setting
these constraints is optional, as the autocoder has sensible
defaults for various physical attributes. For example, the mass
and volume will be randomly generated, but upper bounds
are set for volume and density. Other constraints may include
one of the four supported types of physical systems, though a
general PhysicalSystem type can also be used instead of
the Rover or Plane types. After the constraints are set for
the physical and software system, helper methods can set the
uninitialized values randomly.

Once all the parameters are set, the CodeGeneration
class is used to create a new params.h and autocode.cpp
file according to these parameters. These generated source
files are then moved into the directory containing the flight
software.

To preserve as many different iterations of a binary as
possible, the flight software binary is built using CMake. This
allows us to vary compiler options such as optimization levels
and target architectures, further increasing the space of possible
binaries generated by AUTOCPS. Each module is also built as
a static library first before being incorporated into the final
binary, which allows users to analyze specific modules rather
than the full flight software if desired.

D. Randomization space

The autocoder has a few degrees of freedom to generate
semantically different flight software:

• 4 different types of vehicles, including planes, rockets,
helicopters, and rovers.

4



Fig. 2. AUTOCPS Module architecture. Arrows represent the minimum required data flow between modules, but additional data flows, such as from autonav
to attitude, may be included as needed. Note that clock, stub and autocode modules are not shown.

• 4 choices between JPL and Hamilton quaternion con-
ventions. In JPL quaternions, ijk = 1, while in
Hamilton quaternions ijk = −1.

• 24 different ways to include or exclude 4 specific
modules to simulate hardware offload. We selected the
autonav, kalman, imu and sensor modules as
offloadable, as their tasks may be done in hardware
or ignored altogether. Without the imu or sensor
module, the system will only receive input from seq,
thus turning it into a drone.

• 4 different sigmoid curve functions, and 4 dummy
curve-fitting methods. While these functions are cur-
rently extremely rudimentary, the relevant code can be
easily extended to include more intricate functions.

• 4 different methods of calculating π, including a
simple constant and through trigonometric functions.

This allows us to generate over 4000 semantically different
versions of flight software with our default settings. Further
modifications can also be made to other parameters of the
software, such as the dimensions of the system as well as the
positions and number of various sensors. While these changes
will not significantly modify the semantics of the software,
they may provide more data with different constants or code
flow to work with.

Changing the target architecture or compiler options may
cause the binary to have an entirely different control flow [17].
AUTOCPS can also compile the autocoded flight software with
different sets of build options to further increase the search
space of binaries it can generate. This is achieved by a set of
CMake presets that can be covers a variety of compilers and
optimization levels, and can be easily extended to other use
cases.

Rovers Rotary-wing 
Aircrafts

Fixed-wing 
Aircrafts

Rockets

Fig. 3. Overview of domains extracted from survey.

Fig. 4. Steps to generate a FSW binary using AUTOCPS. We can divide it
into steps that modify the semantics of the program, and steps that modify
the binary of the program.

Module Name Description
att_ctrl Attitude control logic
autocode Autocoded parameters
autonav Autopilot/auto-navigation code
clock Timing and clock-related code
datatypes Basic datatypes for other modules

imu
Interfacing code for inertial
measurement units

ivp Inertial vector propagation code
kalman Kalman filtering code
pos_control Position control logic
sensor Interfacing code for general sensors
seq Input flight software sequences
servo_control Interfacing code for control surfaces

stub
Interfacing code between FSW and
simulator/CLI

TABLE I. LIST OF MODULES IN FSW GENERATED BY AUTOCPS

V. RELATED WORK

In this section, we will describe works related to semantic
program analysis that could benefit utilizing AUTOCPS. In
particular, we will discuss their target evaluation datasets to
highlight the contributions of AUTOCPS. The emerging body
of semantic reverse engineering frameworks often evaluate on
domain-specific datasets that cannot demonstrate the general-
izability of the approaches.

5



Mismo [4] leveraged a contrived dataset of known control
algorithms to perform pattern matching against ten control
system binaries. RVFuzzer [18] aims to fuzz the inputs of
robotic vehicles to discover semantic bugs within the controller
code. They evaluate their approach on two different control
programs for a single quadcopter model. Similarly, Choi et.
al. use UAV binaries to generate sensor traces to discover
control invariants to monitor the drone dynamics [6]. They
reverse engineer the drone binary to integrate the control
invariant monitor. They evaluated their approach on only
eleven UAV binaries. ICSRef [3] is an automated reverse
engineering framework for industrial control system binaries.
They leveraged a commercial development environment to
generate a large set of industrial control system binaries along
with a knowledge base of semantic information stemming
from the development environment metadata. Although this
work provides a similar pipeline to automated control systems
binary generation, the dataset is domain-specific, and they
do not formalize the generation of various control algorithm
modules that are semantically different. The most similar
approach to AUTOCPS is PERFUME [5]–a framework to
extract mathematical expressions from low-level binary rep-
resentations without a reference dataset. They implemented
a similar dataset generation pipeline by utilizing a random
math expression generator [19], translating each expression to
source code, and then compiling the source code to a binary
file. Although this approach allows for end-to-end evaluation
of binary representations to source mathematical expressions,
the associated mathematical expressions are limited to simple
arithmetic expressions that are not close to real-world, cyber-
physical binaries.

VI. DISCUSSION

AUTOCPS provides a valuable tool for CPS reverse engi-
neering projects by providing a corpus of randomly generated,
semantically unique, and easy-to-understand FSW binaries that
provide real-life examples of control equations. In this section,
we will discuss the limitations of AUTOCPS, as well as future
work to be done in this direction.

A. Limitations

The FSW generated by AUTOCPS is much simpler than its
real-life counterparts, which often run on a real-time preemp-
tive operating system [12]. However, AUTOCPS generates a
flight software that simply runs using a non-preemptive loop.
This simplifies the analysis of the program with methods such
as symbolic execution while preserving the semantics of key
FSW functions. However, this may result in different results
when executed compared to an FSW running on a real-time
operating system.

AUTOCPS may also be extended beyond the reverse en-
gineering use case by being able to reflect a particular real-
life physical system. Doing so with AUTOCPS will result in
infinitely many different drones for each semantically similar
FSW. Thus, simulations may need to be run upon the FSW
to examine if the control equations accurately reflect the
physical system. However, as noted in Section V, AUTOCPS’s
evaluation dataset is far more comprehensive and generalizable
than prior evaluation datasets.

B. Future Work

AUTOCPS currently provides interfaces to work with four
subtypes of physical systems. However, other physical systems,
such as submarines and stationary landers, also exist and are
only represented with a generic type in our autocoder. Future
work can augment the set of AUTOCPS’s modules to include
these systems into our autocoder by adding specific control
equations for each of these systems.

Given the modularity of our system, the dataset generation
is easily amenable to new modules serving these use cases.
However, future work can also focus on automating the extrac-
tion of source code modules, such as using machine learning
based approaches. Moreover, data augmentation approaches
can be explored to add more noise to the generation process.

For AUTOCPS to satisfy our definition of valid, we must
define the exact tasks required of each FSW module within
AUTOCPS. This set of tasks is defined in each module’s
header file and the function declarations within, which is
then implemented by the autocoder or by the settings in
params.h. In the future, we hope to restrict our definition
of valid to only include control semantics that can achieve
tasks provided to the FSW. This requires a way to validate the
flight software. While a simple validation tool is available in
the FSW in CLI form, this tool does not allow for external
inputs such as obstacles or account for other forces such as
wind acting on it. Thus, future work will include extending our
stub module such that AUTOCPS can integrate into software-
in-the-loop physics simulators.

VII. CONCLUSION

In this paper, we introduce a generalized design for flight
software that can be easily analyzed by reverse engineer-
ing tools, while preserving the semantics of real-life con-
trol algorithms. Using this generalized design, we develop
AUTOCPS, a tool to generate simplified flight software for
binary analysis testing. AUTOCPShas a search space of over
4000 semantically different source files to generate from, all
of which create valid variations of flight software. Further
extending the search space is the number of compiler options
and physical device characteristics available to the user, with
nearly infinitely many binaries available for each variant of
the original control equations. We describe how AUTOCPS
can be interfaced with cyber-physical simulators and discuss
immediate future research directions. AUTOCPS provides a
state-of-the-art evaluation dataset for future cyber-physical
security research directions that reach well beyond the scope
of semantic reverse engineering.

VIII. ACKNOWLEDGEMENT

This research is based upon work supported by DARPA’s
ReMath program, Contract HR00112190020. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

6



REFERENCES

[1] C. Vellaithurai, A. Srivastava, S. Zonouz, and R. Berthier, “Cpindex:
Cyber-physical vulnerability assessment for power-grid infrastructures,”
IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 566–575, 2014.

[2] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of cyber war,”
Survival, vol. 53, no. 1, pp. 23–40, 2011.

[3] A. Keliris and M. Maniatakos, “ICSREF: A framework for automated
reverse engineering of industrial control systems binaries,” in 26th
Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet
Society, 2019.

[4] P. Sun, L. Garcia, and S. Zonouz, “Tell me more than just assembly!
reversing cyber-physical execution semantics of embedded iot controller
software binaries,” in 2019 49th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). IEEE, 2019, pp.
349–361.

[5] N. Weideman, V. K. Felkner, W.-C. Wu, J. May, C. Hauser, and L. Gar-
cia, “Perfume: Programmatic extraction and refinement for usability
of mathematical expression,” in Proceedings of the 2021 Research on
offensive and defensive techniques in the Context of Man At The End
(MATE) Attacks, 2021, pp. 59–69.

[6] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 801–816.

[7] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, “Revisiting binary code
similarity analysis using interpretable feature engineering and lessons
learned,” arXiv preprint arXiv:2011.10749, 2020.

[8] D. Xu, J. Ming, and D. Wu, “Cryptographic function detection in
obfuscated binaries via bit-precise symbolic loop mapping,” in 2017
IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 921–
937.

[9] P. Sun, L. Garcia, G. Salles-Loustau, and S. Zonouz, “Hybrid firmware
analysis for known mobile and iot security vulnerabilities,” in 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2020, pp. 373–384.

[10] A. D. Team, “Code Overview (Copter),” https://ardupilot.org/dev/docs/
apmcopter-code-overview.html, 2021.

[11] H. Bin and A. Justice, “The design of an unmanned aerial vehicle based
on the ardupilot,” Indian Journal of Science and Technology, vol. 2,
no. 4, pp. 12–15, 2009.

[12] D. Dvorak, “Nasa study on flight software complexity,” in AIAA
Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited
Conference, 2009, p. 1882.

[13] P. B. Jackson, “Overview of missile flight control systems,” Johns
Hopkins APL technical digest, vol. 29, no. 1, pp. 9–24, 2010.

[14] G. E. Reeves and J. F. Snyder, “An overview of the mars exploration
rovers’ flight software,” in 2005 IEEE International Conference on
Systems, Man and Cybernetics, vol. 1. IEEE, 2005, pp. 1–7.

[15] R. Bocchino, T. Canham, G. Watney, L. Reder, and J. Levison, “F prime:
an open-source framework for small-scale flight software systems,”
Small Satellite Conference, 2018.

[16] “AUTOCPS git repository,” https://github.com/usc-isi-bass/AutoCPS.
[17] X. Ren, M. Ho, J. Ming, Y. Lei, and L. Li, Unleashing

the Hidden Power of Compiler Optimization on Binary Code
Difference: An Empirical Study. New York, NY, USA: Association
for Computing Machinery, 2021, p. 142–157. [Online]. Available:
https://doi.org/10.1145/3453483.3454035

[18] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “{RVFuzzer}: Finding input validation bugs in
robotic vehicles through {Control-Guided} testing,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 425–442.

[19] G. Lample and F. Charton, “Deep learning for symbolic mathematics,”
in International Conference on Learning Representations, 2019.

7


