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Abstract—Attributing interactions with Internet of Things
(IoT) devices to specific users in smart environments is extremely
important as it enables personalized configurations and access
control. This requirement is particularly stringent when it comes
to parental control measures designed to protect children from
contact with dangerous machinery or viewing materials that are
inappropriate for their age. To this end, we show that naturally
occurring interactions with objects in smart environments can
be used as a behavioral biometric in order to identify users. The
heterogeneous nature of smart devices enables the collection of
a wide variety of inputs from such interactions. In addition, this
system model allows for seamless identification, without the need
for active user participation or rearrangement of the IoT devices.

We conduct a remote study taking place in six households
composed of 25 participants. We demonstrate that our system
can identify users in multi-user environments with an average
accuracy of at least 91% for a single object interaction without
requiring any sensors on the object itself. This accuracy rises to
100% when six or more consecutive interactions are considered.

I. INTRODUCTION

Everyday objects and appliances are being enriched with
heterogeneous sensors to facilitate daily activities and provide
a better user experience. Such devices are fundamental build-
ing blocks of modern Internet of Things (IoT) environments.
By the end of 2022, smart homes are projected to surpass the
84 million mark in Europe alone [15]. As the number of such
environments grows, so does the number of devices owned by
households. The variety of data collected by such devices not
only contributes to providing more customized services, but
can also be used to protect such environments.

Despite the growing number of smart environments, they
often do not have any built-in security controls. Due to the
limited interfaces of IoT devices, most of the known safe-
guards cannot be easily implemented. However, the attribution
of certain activities performed with these devices is necessary
to limit unauthorized use. For example, parents may want to
control their children’s use of devices such smart thermostats,
TVs, or other appliances [20]. Therefore, a smart home should
be able to distinguish who is interacting with these objects
at a given moment to decide whether certain actions can be
safely executed. While many existing solutions focus on the
recognition of specific activities and gestures performed by
the users of IoT devices [14, 2, 16, 12, 11], in this case, the
attribution of those activities to specific household members is
desired. Some studies look at identifying users using various

on-device sensors [5, 19]. However, these approaches assume
the presence of cameras or other specific types of devices
in the environment. This is not only impractical but also
does not use the full potential of heterogeneous environments.
Moreover, most such systems actively involve users in the
identification process, which negatively impacts their usability.

In this paper, we propose a system that seamlessly identifies
users based on their interactions with smart objects. Our
system models physical interactions using the most common
sensors in smart environments, such as inertial measurement
units (IMUs) and microphones [13]. It operates in three con-
figurations: ON-OBJECT, OFF-OBJECT, and COMBINED. An
ON-OBJECT configuration uses on-device sensors to extract
features, whereas in OFF-OBJECT, only sensors from nearby
objects are used. In the third configuration, the system relies
on both on-device and co-located sensors. We show that some
types of interactions are more distinctive than others and co-
located objects contribute to higher accuracy of identification.

To validate our approach, we collected samples of multiple
user interactions from six real households with 25 participants
in total. To achieve this during the Covid-19 pandemic, we
designed a set of experiments that were carried out remotely,
without the need for researchers to be present in the par-
ticipants’ environments. Overall, based on our analysis, the
system achieves high identification accuracy, regardless of the
size of the household or the environment configuration.

We make the following contributions in the paper:

o We build a prototype of a novel identification system
based on physical interactions with smart objects.

o We create a dataset consisting of sensor data from 38
devices across six households involving 25 participants.

e We make all data and code needed to reproduce our
results available online. !

II. BACKGROUND & RELATED WORK

In this section, we cover the most common approaches
and methods that translate users’ physical interactions with
surrounding objects into biometric features. Multi-sensor fu-
sion techniques take advantage of the heterogeneous nature of
sensors embedded in such objects to improve activity recog-
nition. Our system is based on the assumption that attributing
various activities to specific users will enable their seamless
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identification, which will not only significantly improve user
experience but also security in smart environments.

A. Multi-sensor fusion

Multi-sensor fusion systems focus on identifying specific
actions using diverse types of inputs supplied by a variety of
sensors. Instead of relying on one modality, signals are ex-
tracted from different sources [1]. Most of the research in this
area has been developed to aid Human Activity Recognition
(HAR). Some HAR systems recognize certain types of body
movements by analyzing objects’ orientation and accelera-
tion [14, 2, 16]. Others precisely identify tasks such as cooking
or cleaning the house by applying sensor fusion [12, 11]. Using
multiple sensor modalities improves the activity recognition
performance and creates a better reference frame [9]. A variety
of techniques, including different ensemble methods, can be
used to combine heterogeneous modalities [1].

B. Interaction-based biometric systems

The type of biometrics based on the physical interactions of
users with objects around them, such as smartphones, smart
watches or other mobile platforms, attempts to fully exploit the
heterogeneous nature of built-in sensors. Such systems profile
users by collecting relevant information about their unique
movements and gestures when they perform certain tasks,
including typing, clapping, walking, and so on [8, 4, 3, 17].

A similar approach can be applied to IoT environments.
However, instead of a single device, the entire infrastruc-
ture can be used to capture these interactions. In this do-
main, SenseTribute [10] is the closest to our work. It is an
interaction-based occupant identification system that extracts
signals from accelerometers and gyroscopes. It ensembles
and clusters user activities with supervised and unsupervised
machine learning techniques. Our work extends SenseTribute
in several ways by considering more sensor modalities, several
households instead of just one, and an increased number
of users. More importantly, our proposed system is able to
employ co-located sensors, which are not located directly on
objects, to fingerprint users. This enables not only signifi-
cantly improved identification performance in comparison to
SenseTribute (c.f., Section VI), but also makes it easier to
deploy in existing smart homes, as it uses the natural locations
of smart devices without restrictions on their placement. It also
allows us to identify interactions with objects that do not have
any sensors of their own.

III. SYSTEM DESIGN

The main goal of this work is to introduce an intuitive and
seamless identification method for smart environments. User
identification in smart environments is necessary to enable
user-specific configurations, track access or usage patterns
(to improve user experience), or implement parental controls.
Smart environments should be able to fingerprint users during
their usual interactions with smart devices. The wide range of
sensor types currently used in smart homes enables systems
to profile household users and distinguish them with high

accuracy. This is made possible through the input from sensors

of nearby devices already present in the smart home as the user

interacts with the environment during their daily activities.
In short, the system should fulfill the following design goals:

1) The system should provide a seamless user experience
and should not require the user to change their normal
behavior, such as having to perform explicit actions or
gestures.

2) The system should have low friction for the user. This
means that the system must have a high identification
accuracy to avoid the need for user intervention due to
misidentification by the system.

3) The system should not have specific configuration re-
quirements with respect to sensor placement. Instead, it
should be applicable to existing deployments. In particu-
lar, the system should not require that every object used
for identification be equipped with sensors, but rather
allow the use of co-located devices.

A. System overview

Our system is applicable to smart environments where
everyday objects, such as refrigerators or drawers, have been
augmented with smart devices. Users of such environments
can monitor the states of these smart objects, have access to
enhanced functionality, and interact naturally with them during
their daily activities.

Typical activities in smart environments involve several
interactions with smart objects. For example, the user may
first open the dishwasher to start unloading it. Then they
open various cabinets and drawers to put away clean dishes.
These interactions have physical effects on the environment
that can be picked up by nearby sensors, and—as each type
of interaction is performed in a unique manner by different
people—they can provide a behavioral fingerprint that allows
our system to distinguish and identify different members of
a household. Moreover, sequences of these interactions can
be used to further increase system performance. We focus on
a single user being identified at a time, and do not consider
multiple concurrent users as a simplification.

Our system does not require the object that is part of an
interaction to be equipped with sensors itself. In fact, it is
often beneficial for the system to consider sensors on other
close-by objects. In our work, we therefore consider three
possible deployment configurations: using only sensors that
are fitted to the object in question (ON-OBJECT), only data
from co-located sensors (OFF-OBJECT), or a combination of
both (COMBINED).

B. Adversary model

As our proposed system identifies the person that interacted
with physical objects, we consider attackers to have physical
access to the house and the devices therein. Due to this
assumption, attackers are considered to be relatively benign
(e.g., a child wanting to access restricted TV channels or order
their favorite food using the smart fridge). As a result, we
exclude more sophisticated attacks such as modifying sensor



firmware, tampering with network communication, spoofing
sensor data or poisoning the training phase. Instead, we assume
the attacker will interact with devices in the normal manner
and be successful if they are incorrectly identified as an
authorized user (i.e., a zero-effort attacker). Note that our
accuracy metric is actually stricter than this, as a child being
misidentified as another unauthorized child is considered a
wrong classification but would not lead to incorrectly denying
or granting access.

Another type of attack that could be relevant but is not
evaluated in this paper is the imitation attack. Since we assume
that an adversary has physical access to the IoT infrastructure,
they can attempt to mimic the behavior of the legitimate user.
For instance, children may try to imitate the gestures of their
parents while they interact with the smart devices.

IV. EXPERIMENTAL DESIGN

During our experiment, we gather data in real-world homes
of various household sizes to study the uniqueness of physical
interactions in multi-user environments. In order to emphasize
the real-world nature of the experiment, we do not restrict
participants in the number and type of appliances they use
during the study. This ensures that our setup reflects the
makeup of real households, rather than an artificial lab setting.
This research project has been reviewed by the responsible
research ethics committee at our university and has received
formal approval (ref. CS_C1A_20_014-1).

A. Data collection

To study the use of smart home interactions for user
identification, we gathered data using types of sensors that
can typically be found in modern smart homes. The sensors
used in our experiment are magnetic contact switches (which
can detect open/close events similar to door/window contact
sensors), USB microphones (which are only used to measure
sound pressure levels), as well as ICM20948 IMUs (which
consist of an accelerometer, a gyroscope, and a magnetome-
ter). These sensors are mounted on and controlled through
ten Raspberry Pis. We use these custom Raspberry Pi sensor
boards because raw sensor data in commercial smart devices
is typically inaccessible for developers. The sensor boards are
deployed in places where equivalent smart devices are already
common in most smart environments, such as home appliances
or kitchen furniture. The ground truth for events related to
interactions with smart objects—such as the opening of a
kitchen drawer or the closing of a fridge door—is provided
by the aforementioned magnetic contact switches. Figure 1
shows one of the sensor boards deployed in the kitchen of a
study participant.

The Raspberry Pis securely stream the data to a remote
server through a wireless hotspot provided by a smartphone.
Additionally, the devices store a local backup of the measure-
ment data. The smartphone further gives the user access to an
app that guides the user through the experiment, labels and
timestamps each run of the experiment, and synchronizes the
time of all deployed Raspberry Pis.

Fig. 1: A Raspberry Pi mounted on a kitchen cupboard door. It
is outfitted with a magnetic contact sensor (to detect when the
cupboard is opened or closed), a USB microphone (to measure
sound pressure levels), and an IMU (to record acceleration,
gyroscopic motion and orientation data).

B. Recruitment of participants

Due to the ongoing Covid-19 pandemic, we could only
collect data from people from within their own households.
Therefore, we advertised the experiment in our department as
well as among friends and family in order to find households
where several members of the household were willing to
participate. We recruited a total number of 25 people including
two children across six households. A detailed overview of
the composition of the different households and the devices
available in each can be found in Table I.

TABLE I: Household overview. The number of people for H6
includes two children.

Household Hl H2 H3 H4 H5 H6

Number of people 3 2 6 4 3 7
Number of objects 8 10 4 5 4 7

TABLE II: Device location and interaction type breakdown.
Numbers in parentheses show the number of related devices.

Device location H1 H2 H3 H4 H5 H6
Fridge/Freezer Vo v v

Cupboard Vo Ve Yo Yo Yo V)
Floor /(2)

Pull-out drawer v (1) v (1) v (1)
Microwave door ~ ¥/(1) ¥/(1) v Y

Oven door v (1) V(1) v (1)
Dishwasher v vV vy Y
Washing machine v €))]

Bread box /(1)
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Fig. 2: The diagram provides an overview of the processing pipeline of an ensemble learning system. This system extracts
relevant features from interactions with smart objects O; to O,, and supplies them to their base-classifiers. Then, the first-level
predictions P; to P, are fed into a meta-classifier (i.e., a voting or stacking classifier) that computes the final prediction Pr.

C. Remote household environments

Following Covid-19 regulations, our experiment is con-
ducted remotely in the kitchens of the participants. The
participants are given a set of our Raspberry Pi sensor boards
and they have to set up the devices themselves, according
to the provided step-by-step user manual. The number of
used devices varies between households depending on the
size of the kitchen, ranging from six to ten devices. Each
of these devices corresponds to one object interaction (e.g.,
opening and closing the fridge door). The participants in
each household choose these interactions themselves based
on their kitchen layout. A breakdown of where the devices
were installed for each household is given in Table II. For
each of these interactions, one Raspberry Pi device is fitted
to the corresponding monitored point of interaction. The only
exceptions to this are the devices mounted on the floor in
household H1. These devices do not provide any ground
truth for device interactions but are instead used to give
auxiliary sensor data to other interactions based on the gait
characteristics of the user as they move around the room.

During every run of the experiment, participants perform
each interaction exactly once. Each participant completes 20
runs of the experiment, resulting in a total of 3000 runs for
our 25 participants across the six households.

V. METHODS

A physical interaction I initiated by the user U with an
object O is modeled as a time-series I = {X;, Xo,..., X, },
where X, is a signal (i.e. a vector of sensor values) cap-
tured by on-device sensors at time t. Such signals originate
from various heterogeneous sensors, including microphones,
accelerometers, gyroscopes, and magnetometers. To illustrate
this, we will take an example of a smart microwave equipped
with Inertial Measurement Units (IMUs). This smart object
can collect acceleration values as vectors of (@, ay,a.) when
the user opens or closes its door. Because of the heterogeneous
nature of the smart objects, we expect that the length of such
vectors as well as their types will be diverse.

Figure 2 shows the overview of the processing pipeline
of our identification system. When users interact with smart

objects O1 — Oy, on-device and co-located sensors extract fea-
tures and supply them to weak-learners that compute first-level
predictions P; — Py. These predictions are then aggregated
by the meta-classifier that decides on the final prediction Pg
in the second-level prediction layer.

A. Preprocessing

Each interaction I captured by a smart object is time-
stamped by its contact sensor. We denote the start and end
of I as ty and ¢;. Our system segments the signals by the
values of g — 1 and ¢; + 1 before extracting features in the
next phase. I is composed of values characteristic of z sensor
types. As a result, for each I, a set of corresponding matrices
M = 51,55,..., 5, exists that contains vectors of different
sensor values X; between ty3 — 1 and t; + 1. The number
of columns for a single matrix is determined by the sensor
components (e.g. acceleration axis). For a smart object with
three on-device sensors and two components per each sensor,
three such matrices with six columns will be generated. They
are then passed as input to the feature extraction function.

B. Feature extraction & selection

Depending on the system configuration, M may be retrieved
from the smart object the user interacted with (ON-OBJECT),
the objects in proximity (OFF-OBJECT), or a combination
of both (COMBINED). The features are computed from each
column of S;, which contains sensor values extracted between
to — 1 and t; + 1 to account for signals that originate from
the starting and ending movements of a physical interaction.
The system extracts features from the time and frequency
domains, including: mean, median, standard deviation, vari-
ance, kurtosis, skewness, shape factor, absolute energy, mean
of central approx. of 2"¢ derivative, mean and sum of absolute
change, peaks, and Fourier entropy. To protect the privacy
of the experiment participants, these features are extracted
from sound pressure levels (SPLs) instead of actual audio
recordings. Next, the system performs mutual information-
based feature selection [6]. For each O;, our system ranks
the features and then selects the top 20.



C. Training

During the system’s training phase, each user labels their
interactions with their identity after they have authenticated
themselves (e.g., via a setup PIN) to avoid mislabeled data
and training data poisoning. These interactions during the
training phase have to be performed individually (one user
at a time). In our experiment, this labeling was implemented
through a smartphone app (see Section IV-A). Each feature
vector (see Section V-B) generated for an object interaction
during training is then labeled with the user identity provided.
To evaluate our system, we split the total dataset into training
and test data using 10-fold cross-validation. This ensures each
sample (object interaction) is used for testing exactly once.
The training data generated by this process is then used to
train the classifiers as described in the following subsections.

Although we gave participants the freedom to experiment
over a few days, the vast majority did so on the same day,
which may not reflect possible changes in their behavior over
time. In practice, these changes can be accounted for via
periodic retraining and template updates. We leave exploration
of time stability for future work.

D. Ensemble learning

The main reason for using ensemble techniques in our
system is the varying effectiveness of the classification of the
interactions with individual smart objects and their sensors.
Therefore, to boost the performance of various first-level
classifiers, we use two ensemble algorithms. These algorithms
create second-level predictions based on the results obtained
in the previous step.

1) Voting: Our system implements hard voting [7] as a
baseline ensemble method. This technique aggregates the
predictions of weak-learners and then selects the class that
received the majority of votes. In our case, each smart ob-
ject implements a weak-learner that predicts a class given
a set of features extracted by its embedded sensors. These
predictions are fed into a meta-classifier that, based on the
most frequently recurring class, outputs the final prediction
PF :mOd€<P1,P27...Pn).

2) Stacking: In comparison to voting, stacking uses another
machine learning algorithm as a meta-learner. This classifier is
trained using predictions of weak-learners as its features [18].
Stacking can improve the system performance because it learns
which smart objects identify users better and discards the
objects that are less accurate. Our system uses the Random
Forest algorithm as a stacking meta-classifier.

VI. EVALUATION

In this section, we evaluate the identification performance
of our system and compare it to SenseTribute [10]. For
each household, we obtain a different dataset. The number
of samples in each dataset varies based on the number of
household members that participated in our experiment. The
decomposition of smart objects and members in each house-
hold is described in Section IV.

TABLE III: Comparison of average accuracy results from
individual objects between different households given ON-
OBJECT, OFF-OBJECT, and COMBINED configurations. The
numbers in parentheses indicate the number of household
members in each household.

H1 H2 H3 H4 H5 H6
No. members 3) 2) 6) “) 3) (7)

ON-OBJECT 097 099 093 092 097 0.88
OFF-OoBJECT 096 1.00 096 0.89 098 0091
COMBINED 095 1.00 099 09 098 093

Table III presents the averaged accuracy scores in different
households over individual objects. The results are shown for
ON-OBJECT, OFF-OBJECT, and COMBINED configurations.
Apart from two households, the COMBINED configuration
exhibits the best performance and ON-OBJECT the lowest.
The ON-OBJECT configuration is particularly low for H6,
which can be explained by the placement of some sensors
on the semi-automated cupboard, which resulted in the loss
of some vital interaction data for this object. In comparison
to SenseTribute, which achieves only 74% average on-object
accuracy in a 5-person environment, our system achieves a
higher score of at least 88% in more populated environments,
resulting in a 14% improvement in identification performance
over the SenseTribute system. Interestingly, relying solely
on co-located sensors (OFF-OBJECT) to capture the unique
characteristics of the interaction is sufficient to achieve high
identification results. Overall, we observe that including the
data from both on-device and co-located sensors benefits the
system the most. However, we also note that this depends on
the physical arrangement of the objects in the house as well as
their spacing. Unlike in other households, there were greater
distances between objects in H1 and H4. This confirms our
hypothesis that the physical setup will determine which system
configuration is better for a given smart environment. The main
benefit of our system is that it is able to leverage sensors of co-
located devices. If co-located sensors are taken into account,
the minimal identification accuracy in 6 can be improved
by 3% and 5% for OFF-OBJECT and COMBINED settings,
respectively. Aside from significantly improving the identifica-
tion results compared to the scenario used by SenseTribute—
where only sensors on the device that is being interacted
with are considered—this also makes our system more easily
deployable, as we do not require that the sensors used for
identification are located on the device in question.

Table IV shows the accuracy scores for nine types of
common household objects in the COMBINED configuration.
This provides a more detailed view of the performance based
on various kinds of interactions with objects across all house-
holds. Since the experiments took place in the participants’
houses and each had a different set of objects, we could not
always ensure that the same types would be used. Therefore,
the classification performance for each object type is calcu-
lated with different sample sizes, depending on the household.
The interactions with microwave doors appear to have the
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Fig. 3: Averaged accuracy scores of different ensembles of unique objects in H6 for two meta-classifiers and the COMBINED
configuration. Each such ensemble is trained and tested separately, then the scores are averaged across the ensembles of the
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range is between 0.75 and 1.00.

TABLE IV: Device interaction type and accuracy breakdown
for individual devices using the COMBINED configuration.

Device location H1 H2 H3 H4 H5 H6

Cupboard 096 1.00 099 095 098 0091
Microwave door 0.89 1.00 - 0.80 0.98 -
Dishwasher 0.96 1.00 - - 098 0.95
Fridge/Freezer 0.97 1.00 0.98 - - -
Pull-out drawer - 1.00 - 0.90 - 0.96
Oven door - 1.00 0.96 - 0.94
Floor 0.96 - - - - -
Washing machine - 1.00 - - - -
Bread box - - - - - 0.92

TABLE V: Comparison of accuracy results between different
households. Second-level predictions are generated using all
the available objects in the household in the ON-OBJECT
configuration and the Random Forest meta classifier. The
numbers in parentheses indicate the number of household
members in each household.

HI H2 H3 H4 H5 H6
No. members @ @ & @ 3 D
Voting (Vor) 100 1.00 096 099 1.00 0.98
Stacking (Src)  1.00  1.00 098 1.00 1.00 1.00

lowest classification performance, but still, achieve an average
accuracy of 80% in a 4-person household. Typically, the CoM-
BINED configuration improves the identification performance
of objects with a low accuracy of interaction classification;
however, as we mentioned above, in H1 and H4, the objects
were far apart. Regardless of the size of the household, the
average accuracy scores for interactions with other objects
exceed 90%. In general, we observe that the interactions with
the objects considered in our experiment are quite distinctive,
which explains the good performance of the meta-classifiers.

The comparison between the identification performance of
voting (Vo) and stacking (S7¢) meta-classifiers across differ-
ent households is summarized in Table V. The accuracy scores

are calculated for ensembles of all objects in the ON-OBJECT
configuration. We decided to present the worst-performing
configuration to highlight the benefit of including more in-
teractions. The table reveals that Sp¢ performs better. In this
setting, the system learns which objects have better classifi-
cation performance and relies on their predictions, rather than
considering all. Unlike stacking, voting assigns equal weights
to all base-classifiers; thus, they equally contribute to the
final prediction. This could be further improved by assigning
smaller weights to objects that exhibit worse performance. As
expected, the performance of the two meta-classifiers begins
to diverge as the number of household members increases. For
instance, in households with 2—4 members, there is almost no
difference in terms of performance of two meta-classifiers.
However, for 6 and 7 people, the difference between the
performance of Vor and Sp¢ is 2%. Overall, the stacking
meta-classifier outperforms the voting meta-classifier in terms
of the identification performance. While this may also depend
on the physical and behavioral differences between particular
users (e.g., family members versus a group of students), we
expect that in other households this would yield similar results.
In comparison, SenseTribute reaches a maximal identification
accuracy of 96% in their single five-person household setup
when multiple objects are considered.

Figure 3 shows the average performance of different ensem-
bles of unique objects (inc. 95% confidence intervals) in H6
in the COMBINED configuration. We focus on this household
as it was the largest one in our experiment. The identification
performance of the system, regardless of the selected meta-
classifier, gradually improves when it considers more objects.
Overall, S7¢ achieves higher accuracy scores than V. This
difference is especially evident when considering two object
interactions. The system that uses a stacking meta-classifier
offers 5% improvement in the identification performance. The
reason is, as explained earlier, that Vo7 assigns equal weights
to all base-learners. However, the gap between the ensembles



of different size slowly decreases as more objects are included.
Thus, the system can identify the users with high accuracy
considering fewer object interactions.

VII. FUTURE WORK & CONCLUSIONS

In this paper, we propose an identification system based on
physical interactions with smart objects. Rather than relying
solely on built-in sensors, this system uses co-located sensors,
placed arbitrarily in a smart environment.

We conducted an experiment with 25 participants in 6
different households, which showed that regardless of the size
of the household or a specific household setup, users can be
distinguished with high accuracy. Our proposed system is able
to identify users with an accuracy of at least 91% on average
if just one interaction is being recorded by the co-located
sensors. This identification accuracy increases to 100% when
multiple interactions are considered by the system.

These encouraging results indicate the potential use of this
behavioral biometric for authentication purposes, which we
intend to investigate in our future work. We publicly release
our dataset and the code needed to reproduce our results.
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