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Abstract—Stalkers can hide Bluetooth Low-Energy (BLE)
trackers, like the Apple AirTag and Tile Finder, in their targets’
clothing or vehicles to surveil their locations. Existing counter-
measures to detect BLE-based stalking are promising but have
several shortcomings: they only work against Apple products,
they are slow to detect trackers, and there is no publicly available
characterization of how well they work. We present an open-
source, general method for detecting maliciously deployed BLE
trackers. Our algorithm detects malicious devices in just a few
minutes, whereas previous algorithms take hours or days. We
show in a small but novel validation study that our algorithm
performs with high precision and recall for most extant trackers,
although AirTags pose additional challenges. Along with our
algorithm and validation, we provide an open-source Android
application capable of real-time detection of these devices. We
also characterize the behavior of the AirTag and discuss the risk
factors which make it particularly hard to detect. We conclude
with a discussion for future work to make tracking devices safer
for the public.

Index Terms—Bluetooth, Stalking, AirTag, Tile, privacy,
surveillance

I. INTRODUCTION

Crowd-tracked Bluetooth Low-Energy (BLE) beacons such
as Apple Airtags and Tile Finders were originally designed
to find lost or stolen objects. The user attaches the beacon
to an object and uses their phone to identify the beacon’s
location. Now stalkers hide these beacons in their targets’
possessions to track their location [5], [6], [14], giving stalkers
the opportunity to harass and control people. While domestic
abusers have previously used electronics like smart phones and
GPS transponders to commit intimate partner violence [7], [8],
[16], crowd-sourced BLE beacons raise additional concerns
because they are small, cheap, easy-to-use, and can last for
years without a battery replacement [10], [24]. An attacker
only requires brief access to their target’s clothing, posses-
sions, or vehicle to hide a BLE tracker and establish precise,
real-time tracking for an extended duration. Figure 1 illustrates
this attack.

While Apple has developed a countermeasure to alert
iPhone users automatically if an AirTag is tracking them,
Android users have to manually open Apple’s Tracking Alert
app to scan for devices [26]. These countermeasures also do
not apply to Bluetooth beacons from other manufacturers.
Furthermore, Apple has declined to tell the public how their
algorithms work or how effective they are, and informal

Fig. 1. The attack detected by BLE-Doubt. (A) The attacker places a tracker
on the target’s person. (B) The tracker is detected by a bystander’s smart
device and reported to the manufacturer’s cloud. (C) The attacker monitors
the position of the target with the manufacturer’s smart phone app.

experiments by journalists have shown that it may take days
for Apple’s countermeasures to work at all [6].

To rapidly and automatically detect BLE trackers, we devel-
oped BLE-Doubt, an open-source Android application1 which
scans for malicious BLE trackers using a novel algorithm
based on a simple, topological model of tracking. In this paper,
we present and validate our algorithm on a small new dataset
generated by the authors through simulated stalking scenarios
using a variety of real BLE trackers including AirTags, Tiles,
and Chipolos. We show that our algorithm performs well with
all trackers but the AirTag, which is particularly resilient to
our countermeasures. We discuss the features of the AirTag
which make detection particularly hard, and make design
recommendations toward safer BLE trackers. We conclude
with recommendations for future work.

II. BACKGROUND AND RELATED WORK

A. BLE Trackers

Bluetooth Low Energy (BLE) is a low-power protocol for
short-range radio communication between electronic devices
in the 2.4 GHz ISM band [28]. A wide range of IoT devices
communicate over BLE [3].

BLE supports several modes of operation, including the
BLE “beacon.” BLE beacons broadcast short messages called
advertisements to all nearby BLE devices. These advertise-
ments have been used for indoor localization [19], pairing

1BLE-Doubt source code is available at https://github.com/jeb482/bledoubt.



peripherals [28], and sharing point of interest information [21].
Beacon advertisements all include a Bluetooth MAC Address
to identify themselves to listeners. In most cases, this address
is static, but some beacons employ “Privacy Mode,” in which
the MAC address periodically changes [28].

A subset of Bluetooth Low-Energy beacons are BLE track-
ers, which use their advertisements to signal their locations.
Typically, BLE trackers are short-range, but some manufactur-
ers such as Tile and Apple have implemented a crowd-sourcing
approach to localize them. In this approach, nearby smart
devices may overhear the tracker’s beacon advertisements.
These smart devices then determine their own location (e.g.
with a GPS) and inform the manufacturer’s cloud that the
tracker has been detected at that location.

Crowd-sourced localization of BLE trackers provides
global, real-time tracking without decreasing battery life. How-
ever, it also allows stalkers and abusers to track their targets
from any distance as long as the target occasionally passes by
a device running the manufacturer’s app. For example, every
BLE-enabled iPhone may report AirTag locations to Apple’s
cloud.

B. Technology and Interpersonal Surveillance

Researchers have documented how abusers use technology
to commit intimate partner violence (IPV) [8], [13], [16],
[23], including through GPS trackers [25] or smart home
devices [2]. Privacy experts have raised similar IPV concerns
and concern over corporate abuse of privacy when Tile was re-
leased [17]. The National Network to End Domestic Violence
also identified that Apple AirTags may put targets of IPV at
extreme risk.

C. Existing Countermeasures

Apple’s original “anti-stalking” solution for BLE track-
ers [11], released in April 2021, allowed iPhones to detect
AirTags thought to be following iPhone users, but only when
the AirTags were separated from their owners for some time.
However, journalists found that Apple’s countermeasures were
insufficient to interrupt a simulated stalking scenario [6]. The
specifics of Apple’s algorithm are unknown.

In August 2021, the Secure Mobile Networking Lab pub-
lished AirGuard, an open-source Android application designed
to detect malicious AirTags [1]. AirGuard alerts the user
when it detects a single AirTag in three separate locations.
One potential weakness of AirGuard is that it may produce
false positives if the user encounters a passerby with an
AirTag in three different locations. In contrast to Apple’s
countermeasures, AirGuard’s algorithm for detecting trackers
is publicly known and testable.

In December 2021, Apple released the Tracker Detect
app for Android. Unlike AirGuard, Apple’s Tracker Detect
requires the user to scan manually for AirTags, creating an
additional barrier to detection [12]. Tracker Detect can force
nearby AirTags to ring, making them easier to retrieve if
they are detected. However, Tracker Detect’s manual scanning
requirement may decrease the chance that the trackers are

detected at all. Neither countermeasure is effective against
non-AirTag trackers.

Below we present BLE-Doubt, which automatically scans
for and reports malicious trackers, is resilient to false positives,
can detect trackers besides AirTags, and is easily extensible to
new types of BLE trackers.

III. BLE-DOUBT: A TRACKER-SNIFFING APPLICATION

BLE-Doubt is an open-source Android application that au-
tomatically identifies malicious trackers and alerts the user to
their presence. At a high level, the BLE-Doubt app detects and
parses BLE beacon advertisements, stores a history of these
detections, classifies devices in the history, and alerts the user
when a suspicious device is located. We refer to the history
of a single beacon’s advertisements along with the time and
location of their detections as the beacon’s trajectory. Much of
BLE-Doubt’s novelty comes from its trajectory classification
algorithm, which determines whether or not a BLE beacon is
suspicious based on its history.

A. Trajectory Classification

To classify a BLE beacon, BLE-Doubt must determine
whether or not the trajectory of the device is “suspicious,” i.e.
following the user. In this section, we motivate and present our
Topological Classifier algorithm along with three baselines for
comparison and a trajectory decomposition. We evaluate our
algorithm on the BLE-Doubt dataset in Section IV.

We model a beacon’s trajectory R as a sequence of ordered
pairs

(
xi ∈ S2, ti ∈ R

)
with the constraint that {ti} increases

monotonically. S2, the unit sphere, represents the position of
the device on Earth. R, the Reals, represents the moment of a
beacon advertisement. For brevity, we say that xi is in R and
ti is in R if (xi, ti) ∈ R. The diameter of R is the largest
great-circle distance ρ(xi, xj) for any two positions xi, xj in
R. Similarly the duration of R is the longest time |ti − tj |
between any two timestamps ti, tj in R.

Our baseline classifiers follow from these point-set statistics.
Our first baseline, the Duration Classifier, classifies a device
as suspicious if its trajectory has a duration which exceeds
some threshold α. This evaluation is trivial in constant time
because {ti} is monotonic. Similarly, the baseline Diameter
Classifier classifies a device as suspicious if its trajectory
has a diameter which exceeds some threshold β. We use
the obvious O(n2) algorithm to find the diameter, but more
efficient methods are known [15]. We note the similarity of
our Diameter Classifier to the AirGuard app [1]. Our final
baseline, the Hybrid Classifier, labels a device as suspicious
only when both the Duration and Diameter Classifiers would
both classify it accordingly. We have found that 10 minutes
and 300 meters work fairly well for α and β, respectively. We
leave the tuning of these parameters to future work.

Our experiments show that all three baselines successfully
detect malicious trackers, but produce too many false positives.
Notably, no baseline can differentiate a device in constant
proximity to the user from a device which the user happens



upon in multiple locations. By contrast, our Topological Clas-
sifier differentiates between these scenarios using the concept
of ε-connectedness common in computational topology. ε-
connectedness proceeds from an early formulation of con-
nectedness by Cantor [9]. Our treatment of ε-connectedness
is adapted from a 2000 paper by Robins & Meiss [20].

A trajectory is ε-connected in time—or ε-connected, for
short—if no two sequential timestamps ti, ti+1 are more than
ε seconds apart. That is to say, there are no time gaps bigger
than ε between consecutive beacon detections. Any device
trajectory can be uniquely partitioned into a disjoint union of
ε-connected subtrajectories [20]. Algorithm 1 provides such a
decomposition in linear time. These subtrajectories are called
ε-components. Each ε-component can be interpreted as a
period of time during which the beacon was in continuous
proximity to the user’s device.

Algorithm 1: Partition a trajectory into ε-components
Input: A finite, non-empty sequence of monotonically

increasing timestamps {ti} and a scalar
duration ε.

Output: The collection C of index sets of the
non-empty ε-components.

C ← {};
I ← {1};
for j ← 2 to |{ti}| do

if (tj − tj−1) < ε then
I ← I ∪ {i};

else
C ← C ∪ {I};
I ← {j} ;

end
end
C ← C ∪ {I} ;
return C;

Our Topoplogical Classifier, provided in Algorithm 2, ap-
plies the trajectory statistics approach of our Hybrid Classifier
to the ε-components of the device trajectory rather than the
trajectory itself. We choose ε to be 3 minutes for all devices
except the AirTag, which demonstrates long periods of inac-
tivity. For the AirTag, we choose a much more conservative ε
of 10 minutes. Future work should define a unique ε for each
device model to match the empirical advertisement patterns of
real devices.

B. Beacon Parsing

Before it can classify BLE beacon trajectories, BLE-Doubt
must parse and record BLE beacon advertisements. BLE-
Doubt parses beacon advertisements using the open-source
Android Beacon Library [18]. Our beacon parser assigns every
beacon a persistent identifier to keep track of its detections.
We use the BLE beacon’s Bluetooth MAC address—broadcast
with each advertisement—as a persistent identifier. The MAC
address is a good identifier for most devices, except for

Algorithm 2: Topological Classifier
Input: A finite, nonempty device trajectory R, a

constant closeness parameter ε, and two
constant thresholds for duration (α) and
diameter (β).

Output: A boolean value, true if and only if the
device corresponding to R is identified as a
suspicious tracker.

C ← Algorithm1(R.timestamps, ε);
for I ∈ C do

if duration(RI) > α && diameter (RI) > β then
return true

else
continue;

end
end
return false;

those in Privacy Mode, which periodically change or “rotate”
their MAC addresses [27]. Of the devices we tested, only
AirTags employed Privacy Mode, making them harder but not
impossible to detect. We discuss this further in Section IV.

Our parser uses the beacon’s service identifier to differenti-
ate potential trackers from other devices. This was determined
empirically; the trackers we tested used recognizable service
identifiers, presumably to declare themselves to their manu-
facturers’ devices and apps. Devices with these identifiers are
treated as potential threats, but not labeled suspicious until our
Topological Classifier runs.

To detect Tile, Chipolo, Spot and AirTag trackers, whose
header formats are not in the Android Beacon Library or
publicly available, we used nRF-Connect [22], a BLE Scanner,
to reverse-engineer their beacon formats. Currently, BLE-
Doubt can detect the iBeacon, Altbeacon, Eddystone, Tile,
Chipolo, Spot, and AirTag beacon layouts. Any beacon layout
conforming to the BLE standard can be added by extending
the library’s BeaconParser class.

In contrast to the other devices we tested, Apple AirTag
trackers encode their beacon advertisements as “manufacturer
specific data” which is similar to other BLE-enabled Apple
devices (e.g., iPhones and AirPods). This means BLE-Doubt
must monitor all nearby Apple products broadcasting over
Bluetooth in order to protect the user from maliciously de-
ployed AirTags.

C. Database

The data storage for BLE-Doubt is segregated into two
tables. The first table contains metadata about each detected
BLE beacon which may represent a tracker. The second
table contains spatiotemporal data of each detected beacon’s
trajectory.

The device trajectory is stored as a sequence of received
signal strength indicators (RSSI) and latitude-longitude pairs
indexed by timestamp and Bluetooth MAC address. This
information encodes the time, location, and intensity of each



Fig. 2. A map of the trajectory of a malicious tracker (left) versus a false
positive (right). The trajectories are displayed as dotted red lines. The user can
compare these maps with their own memory of travel to determine whether
a suspicious device was truly following them.

advertisement broadcast by the BLE beacon, and relates it to
the appropriate metadata.

D. User Consultation

When a suspicious device is identified by BLE-Doubt’s
Topological Classifier, the user is alerted with a push no-
tification. This notification directs to user to a visualization
of the suspicious device’s trajectory. This UI allows users to
make a final decision of whether or not a suspicious beacon is
malignant. A user can choose to mark the device as safe, which
will prevent BLE-Doubt from sending more notifications.
Alternatively, the user can elect to receive another notification
if the beacon continues to follow them. If the device is still
nearby, the user can use BLE-Doubt to scan for the device.
An example of the map interface is shown in Figure 2.

IV. SYSTEM EVALUATION

Fundamentally, BLE-Doubt should classify BLE devices
which follow the user around as “suspicious”, and all other
devices as “not suspicious”.

It is vital that our algorithm exhibits a high recall to
effectively identify dangerous trackers. Additionally, because
the user is a non-expert with limited bandwidth, our algorithm
must not overwhelm them with a large number of potential
threats which turn out to be benign. Therefore our algorithm
must also demonstrate a high precision. In this section we
evaluate our algorithm’s performance on a novel dataset,
focusing on these two statistics. For each log, an optimal
classifier should classify all the planted trackers as suspicious,
and all other devices as benign.

A. Dataset

We logged sessions of BLE-Doubt usage in a major U.S.
city corresponding to common modes of locomotion including
walking, driving, and public transit. The logs are enumerated
in Table I. Logs A-J were collected over a two-week period

TABLE I
LOGS IN THE BLE-DOUBT VALIDATION DATASET.

Log ID Duration (H:MM) Movement Tracker Locations
A 1:15 Walking Backpack
B 1:35 Walking Backpack
C 1:15 Walking Pockets
D 0:14 Walking Pockets
E 1:24 Car Vehicle
F 0:25 Jogging Backpack
G 0:21 Walking Backpack
H 0:35 Walking Backpack
I 0:14 Train Backpack
J 0:28 Train Backpack

in May 2021. Each includes four to six trackers (drawn from
a collection of paired Chipolo, Tile, and Spot devices, a pro-
grammable RadBeacon BLE Beacon, and unpaired AirTags)
planted on the author. These logs constitute the evaluation set
from which our classifier statistics were collected.

The researcher planted their own trackers in their clothing,
possessions, or a vehicle, mimicking where an adversary could
slip a tracker onto a target without their knowledge. Logs were
collected by one researcher on their own phone. No additional
participants were involved in the study. The authors intend
to publish the BLE-Doubt dataset with this workshop paper,
having scrubbed MAC addresses and device metadata from
the dataset.

B. Classification of Suspicious Devices

We compared the performance of our Topological Classifier
to that of three baselines on the BLE-Doubt dataset: the
Duration, Diameter, and Hybrid Classifiers. For consistency,
we chose the thresholds α and β in our topological classifier to
match their counterparts in the baselines. Because our dataset
was small, we chose not to tune our parameters empirically.

We found that each baseline had perfect or nearly perfect
recall. The Duration Classifier’s recall was particularly strong,
identifying every malicious tracker in the dataset. On the other
hand, each baseline produced a large number of false positives,
as the confusion matrices in Figure 3 show. Of the baselines,
the Duration Classifier was most likely to misclassify a device
as suspicious, followed by the Diameter Classifier. While
the true negative rate was quite high for each baseline, the
disproportionate number of benign devices in the dataset
meant that the small percentage of benign devices classified
as suspicious exceeded the total number of malicious trackers
of any label. This results in a precision below 0.45 for each.

Compared to the baselines, our Topological Classifier
demonstrated vastly superior precision (0.94), but slightly
inferior recall (0.92 versus 0.98, 1.00, and 0.98). Additionally,
the Topological Classifier’s F1 score [4] is 0.93, compared
with the 0.61 for the next-best classifier. The accuracy statistics
for each classifier are provided in Table II.

Even with its improved precision, the BLE-Doubt Topolog-
ical Classifier may occasionally misidentify benign trackers
as suspicious. Therefore, we present the user with the final
decision of whether or not a suspicious BLE beacon is in



Fig. 3. Confusion matrices for baseline classifiers based on spatial diameter,
duration, a combination of the two, and finally our topological classifier. The
label ”1” represents a suspicious device.

TABLE II
ACCURACY METRICS FOR EACH TRAJECTORY CLASSIFIER.

Classifier Precision Recall F1 Score
Diameter 0.24 0.98 0.39
Duration 0.23 1.0 0.38

Hybrid 0.44 0.98 0.61
Topological 0.94 0.92 0.93

fact malicious. We believe that a user who is concerned
about the privacy of their location data may be willing to
tolerate an occasional false positive, which they can validate
based on their contextual information or by investigating their
belongings for trackers. Future work should examine the trade-
off between false positives and false negatives that users are
willing to tolerate.

C. Operational Hardware Constraints

Even in an urban setting, the memory footprint represented
by our database of devices remained small. The average JSON
log in the BLE-Doubt format is 741 kB (standard deviation
685 kB), and we expect the SQLite implementation used on
the smart phone to be even smaller. In terms of memory usage,
in JSON format our logs occupied an average of 13.9 kB of
memory per minute of logging (standard deviation 2.86 kB.
Our current implementation of BLE-Doubt allows for manual
database purges rather than automatic ones. It is a noteworthy
side-effect of our classifier’s design that a non-suspicious
device can have its history cleared after any ε-component
without affecting future classification fidelity. Given the large
quantity of memory and disk space available to commodity

TABLE III
LOGS OF AIRTAGS DETECTED AMONG OTHER APPLE DEVICES.

Log ID Duration Movement Apple Devices Precision Recall
K 1:30 Walking iPhone, Watch 0.07 1.0
L 0:45 Walking None 1.0 1.0
M 0:50 Train Unknown, Many 0.015 1.0
N 1:04 Car iPhone 0.25 1.0

smart phones, memory concerns should not affect the usage
of BLE-Doubt.

Additionally, the battery consumption on the Samsung
Galaxy S10 used to collect these logs was about 10% per hour
running BLE-Doubt along with other essential tasks and an
audio listening app. While this amounts to non-trivial battery
consumption, it is not so extreme as to prevent a user from
running BLE-Doubt altogether.

D. Finding AirTags among Apple Devices

In addition to the BLE-Doubt validation set, we collected
logs to study paired AirTags in the presence of other Apple
ecosystem devices, which share identical beacon advertisement
formats. These logs K-N, collected in January 2022, are
described in Table III along with the precision and recall
of the Topological Classifier (ε = 600s) for each log. Each
log represents a journey with two paired AirTags, collected in
the same method as the BLE-Doubt validation set. Some of
these logs also contain one or more non-AirTag Apple devices
which happen to travel alongside the user. The Topological
classifier exhibits flawless performance when no non-AirTag
Apple devices travel with the user. However, when the user
is accompanied by their own Apple device, or that of a an-
other co-located traveller, precision drops proportionally to the
number of co-travelling Apple Devices. Future work should
explore ways to differentiate between benign, co-located Apple
devices and maliciously deployed ones.

V. DISCUSSION

A. Efficacy of BLE-Doubt

Our analysis showed that BLE-Doubt’s Topological Clas-
sifier detects threats about as well as the baselines, but
with a vastly decreased prevalence of false positives, and an
unmatched F1 statistic of 0.93.

Given the large number of benign BLE devices in the
modern world, we assert that a beacon tracker needs a low
false-positive rate. Thus we think the improvement to precision
and F1 justifies the marginal loss of recall compared to the
baselines. We hope future work will extend our methods by
tailoring the algorithm to specific device formats.

We also note that like previous work, our algorithm requires
that the user have relative freedom of movement and a
smart phone. Thus users especially vulnerable to interpersonal
surveillance, such as children, elderly people, people living
in poverty, people experiencing domestic or family violence,
incarcerated people, people living in group homes or hospitals,
and people with mobility disabled by society may not be able
to benefit from any mobile BLE tracker detection algorithm.



Therefore, tracking devices also need direct safety improve-
ments and regulatory changes, which we explore below.

B. Toward Safer Trackers

While AirTags and other BLE Trackers have many benign
uses, their use in stalking still presents a high risk. Here we
make suggestions for manufacturers on how to make BLE
trackers safer and easier to detect.
• Use privacy mode, but rotate the Bluetooth MAC address

infrequently. Rapidly rotating Bluetooth MAC addresses
limit the data available for detection algorithms like
ours. We recommend a period of at least an hour, and
preferably closer to a half day.

• Announce Bluetooth MAC address rotations in a stan-
dard way. Alternatively to the above, we suggest that
the Bluetooth Standard be extended to allow devices to
publicly announce what they are about to change their
MAC addresses to. This would maintain a degree of
privacy, as devices would become indistinguishable from
each other when separated from an eavesdropper for
more than one rotation, but would allow detectors like
BLE-Doubt to correlate rotating MAC addresses in their
constant presence over time.

• Remove crowd-sourcing from BLE Tracker technology.
While this might reduce the user’s capacity to find their
lost or stolen keys, it would guarantee that trackers could
not be used to stalk targets far from an attacker’s own
devices. BLE Tracker apps could still report when a
device was last seen, but would no longer be able to
track it after it first went missing.

• Ensure that BLE-Trackers advertise frequently and con-
sistently over time across all modes of operation. This
maximizes the ability of applications like BLE-Doubt to
correlate data about the tracker over time, and may allow
for less frequent scanning.

• Focus on interventions that do not require targets to own
or operate technology. Trackers can be made large, loud,
and three-dimensional to make it harder for an attacker
hide them. Trackers can make sound moments after being
separated from a phone rather than days.

Some of our suggestions may limit the utility of BLE
Trackers, but this is by design. Maximizing the ability to
locate lost or stolen property also maximizes the ability to
surveil other people. Device manufacturers and regulators have
the opportunity to decide what trade-off of these priorities
best aligns with their values. Additionally, some suggestions
may make these trackers less convenient and desirable. We
believe that the inconvenience posed to a benevolent user by
such changes is less significant than the potential harm of an
undetectable tracker in the hands of an abuser or stalker.

C. Troublesome AirTag Advertisements

Compared to the other trackers we tested, AirTags were
particularly difficult to detect. Tile, Chipolo, and Spot devices
did not employ Privacy Mode, and advertised their presence
every few seconds. Unpaired AirTags behaved much the same,

but upon pairing, AirTags changed their behavior. While
AirTags employ BLE Privacy Mode, this behavior did not pose
an issue for our algorithm. AirTags rotate their MAC addresses
infrequently—somewhere between every two hours and once
a day. The Topological Classifier identifies suspicious devices
quickly enough to avoid this issue.

More difficult was the erratic timing of paired AirTag
advertisements. Whereas the other tested devices maintained
a steady advertisement tempo after pairing, the AirTag would
unpredictably go quiet for durations up to an hour during our
tests. Moreover, when the AirTag resumed its advertisements,
it would only do so for a few minutes at a time and would
mostly remain quiet. This behavior persisted after we sep-
arated the AirTag from its host device. If this behavior is
representative of AirTags in general, even the best possible
BLE detection algorithm may be too slow to prevent harmful
stalking—an hour can be long enough for harm to occur.

VI. LIMITATIONS

While the Topological Classifier itself is highly effective, we
acknowledge that the operational constraints of smart phones
complicate our success. Our system requires frequent if not
constant BLE scanning to obtain the density of data required
for the classifier. This imposes a heavy cost on the battery
life of the device. Although we did not focus on power usage
in our study, we found that our smart phone would lose 5-
10% of its battery per hour of active scanning, which is
prohibitive for casual users. It may be possible to extend the
battery life of the device by increasing the ε parameter of
our topological classifier long enough so that scanning can be
conducted periodically. Our system would also benefit from
a more efficient diameter calculation algorithm as well as
a principled method for retiring stale data. We defer these
improvements to future work.

VII. CONCLUSION

We introduced BLE-Doubt, an open-source, smartphone-
based BLE counter-surveillance application which rapidly de-
tects nearby Bluetooth trackers and determines whether or not
they may be malicious. BLE-Doubt uses a novel topological
algorithm which classifies BLE devices as suspicious before
notifying the user of their presence. We compared our algo-
rithm to baseline trajectory statistics using a novel validation
dataset collected by the authors. Our analysis showed that
BLE-Doubt detects real threats about as well as the baselines,
but with a vastly decreased prevalence of false positives, and
an unmatched F1 statistic of 0.93. We proposed manufacturer-
side improvements to trackers which may help them resist
exploitation ranging from changing the Bluetooth Standard to
making trackers more physically visible.
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